
PacNOG 2

ccTLD Workshop Samoa:
Unix System Administration

Welcome!

� Who are we?
� Timetable and administrivia
� Objectives for the week

� Learn your way around Unix/FreeBSD
� TCP/IP network-based services
� Security
� Upgrading and maintenance

This is YOUR workshop!

� Stop us if we're speaking too fast
� Stop us if you don't understand anything
� Ask lots of questions!

Why use UNIX?

� Scalability and reliability
� has been around for many years
� works well under heavy load

� Flexibility
� emphasises small, interchangeable components

� Manageability
� remote logins rather than GUI
� scripting

� Security
� Windows has a long and sad security history
� Unix and its applications are not blameless though

Windows DOES NOT SCALE

� OK for 100 mailboxes
� But don't try to run 10,000 mailboxes with standard

Microsoft solutions
� Remote administration is painful

� It's still a desktop OS
� Lots of administrative overhead

� Spend your entire life installing patches?
� Not as stable
� Commercial pricing but lousy support
� Closed source commercial software is not necessarily a

bad thing

Simplified Unix family tree
(Look at the wall... :-))

4.4BSD
AT&T

System V

Solaris

Linux

BSDI

NetBSD
FreeBSD
OpenBSD

Red Hat (rpm)�

�

debian (apt)

gentoo (portage)

others...

mandrake
SuSE
yellowdog etc

�

�

�

�

�

�

�

$$

$

Why did we choose FreeBSD?

� It's Free!
� Optimised for performance on i386 hardware

� NetBSD aims to run on many platforms
� OpenBSD aims to provide enhanced security

� Well proven in real-world environments
� Excellent packaging system
� Industrial strength TCP/IP stack

Why not Linux?

� Lack of centralized documentation
� Lack of tools for performance analysis (gstat)
� Too many distributions to choose from

� Ubuntu, Gentoo (Debian – not bad)
� SCO, Turbolinux, Mandriva, SuSE, etc.

� Red Hat used to be the de-facto choice for a reliable,
free distribution
� Now it has gone commercial (RHES)
� Mandriva
� Fedora is "bleeding edge" and has short lifecycle

� Package management is a problem
� rpm, source, apt is better

Why not Linux cont.

� BSD includes the kernel and the userland utilities in a
single source tree

� BSD tends to be more "conservative" (except for
debian)
� emphasises stability and compatibility
� compare: ipfw, ipfwadm, ipchains, iptables...

� Excellent TCP/IP stack
� Ask Microsoft, they used it for Windows 2000

� FreeBSD packaging system allows for flexibility
� Packages (pkg) tend to be more conservative
� Ports are more generally more current

Is free software really any good?!

� The people who write it also use it
� Source code is visible to all

� The quality of their work reflects on the author personally
� Others can spot errors and make improvements

� What about support?
� documentation can be good, or not so good
� mailing lists; search the archives first
� if you show you've invested time in trying to solve a problem,

others will likely help you
� http://www.catb.org/~esr/faqs/smart-questions.html

Is free software really any good?

� Core Internet services run on free software
� BIND Domain Name Server
� Apache web server (secure SSL as well)
� Sendmail, Postfix, Exim for SMTP/POP/IMAP
� MySQL and PostgreSQL databases
� PHP, PERL, C languages

� Several very high profile end-user projects
� Firefox, original Netscape browser
� OpenOffice
� Thunderbird

First topics:

� Unix birds-eye overview
� Partitioning
� FreeBSD installation

Key components of the Unix OS

� Kernel
� Shell
� User processes
� System processes

� Inter-process
communication

� Security model
� Filesystem layout KERNEL

DAEMONS

APPS

SHELLS

I/O (+ terminals)
Memory management (VM)

Interruptions
Scheduling / Timesharing

Eat Resources :−)

(uid / gid)

File management
Editors
Compilers
Network tools

Networking

Launch processes

Job control
(scripting)

Background processing
Non−interactive

(no terminal)

User interaction (terminal)

The UNIX system

USERS

...

Kernel

� The "core" of the operating system
� Device drivers

� communicate with your hardware
� block devices, character devices, network devices, pseudo

devices
� Filesystems

� organise block devices into files and directories
� Memory management
� Timeslicing (multiprocessing)
� Networking stacks - esp. TCP/IP
� Enforces security model

Shell

� Command line interface for executing programs
� DOS/Windows equivalent: command.com or command.exe

� Choice of similar but slightly different shells
� sh: the "Bourne Shell". Standardised in POSIX
� csh: the "C Shell". Not standard but includes command

history
� bash: the "Bourne-Again Shell". Combines POSIX standard

with command history. But distributed under GPL (more
restrictive than BSD licence)

User processes

� The programs that you choose to run
� Frequently-used programs tend to have short cryptic

names
� "ls" = list files
� "cp" = copy file
� "rm" = remove (delete) file

� Lots of stuff included in the base system
� editors, compilers, system admin tools

� Lots more stuff available to install too
� packages / ports

System processes

� Programs that run in the background; also known as
"daemons"

� Examples:
� cron: executes programs at certain times of day
� syslogd: takes log messages and writes them to files
� inetd: accepts incoming TCP/IP connections and starts

programs for each one
� sshd: accepts incoming logins
� sendmail (other MTA daemon): accepts incoming mail

Inter-process communication

� Pipes: easy to use!
� grep hostname /etc/* | less

� Other, more specialised mechanisms
� fifos (named pipes)
� sockets
� System V IPC and shared memory

I.E. through the filesystem or over the network

Security model

� Numeric IDs
� user id (uid 0 = "root", the superuser)
� group id
� supplementary groups

� Mapped to names
� /etc/passwd, /etc/group (plain text files)
� /etc/pwd.db (fast indexed database)

� Suitable security rules enforced
� e.g. you cannot kill a process running as a different user,

unless you are "root"

Filesystem security

� Each file and directory has three sets of permissions
� For the file's uid (user)
� For the file's gid (group)
� For everyone else (other)

� Each set of permissions has three bits: rwx
� File: r=read, w=write, x=execute
� Directory: r=list directory contents, w=create/delete files

within this directory, x=enter directory
� Example: br i an wheel r wxr - x- - -

Key differences to Windows

� Unix commands and filenames are CASE-SENSITIVE
� Path separator: / for Unix, \ for Windows
� Windows exposes a separate filesystem tree for each

device
� A:\foo.txt, C:\bar.txt, E:\baz.txt
� device letters may change, and limited to 26

� Unix has a single 'virtual filesystem' tree
� /bar.txt, /mnt/floppy/foo.txt, /cdrom/baz.txt
� administrator choses where each FS is attached

Standard filesystem layout

/ bi n essent i al bi nar i es
/ boot ker nel and modul es
/ dev devi ce access nodes
/ et c conf i gur at i on dat a
 / et c/ def aul t s conf i gur at i on def aul t s
 / et c/ r c. d st ar t up scr i pt s
/ home/ username user ' s dat a st or age
/ l i b essent i al l i br ar i es
/ sbi n essent i al sysadmi n t ool s
/ st and r ecover y t ool s
/ t mp t empor ar y f i l es
/ usr pr ogs/ appl i cat i ons
/ var dat a f i l es (l ogs, E- mai l
 messages, st at us f i l es)

Standard filesystem layout (cont)

/ usr
 / usr / bi n bi nar i es
 / usr / l i b l i br ar i es
 / usr / l i bexec daemons
 / usr / sbi n sysadmi n bi nar i es
 / usr / shar e document s
 / usr / sr c sour ce code
 / usr / l ocal / . . . 3r d par t y appl i cat i ons
 / usr / X11R6/ . . . gr aphi cal appl i cat i ons
/ var
 / var / l og l og f i l es
 / var / mai l mai l boxes
 / var / r un pr ocess st at us
 / var / spool queue dat a f i l es
 / var / t mp t empor ar y f i l es

Why like this?

� It's good practice to keep /usr and /var in separate
filesystems in separate partitions
� So if /var fills up, the rest of the system is unaffected
� So if /usr or /var is corrupted, you can still boot up the system

and repair it
� That's why we have a small number of essential tools in

/bin, /sbin; the rest go in
/usr/bin and /usr/sbin

� Third-party packages are separate again
� /usr/local/bin, /usr/local/sbin, /usr/local/etc ...

A note about devices

� e.g. /dev/ad0 = the first ad (ATAPI/IDE disk)
� In FreeBSD, entries for each device under /dev are

created dynamically
� e.g. when you plug in a new USB device

� Some "devices" don't correspond to any hardware
(pseudo-devices)
� e.g. /dev/null is the "bit bucket"; send your data here for it to

be thrown away

Any questions?

?

Some reminders about PC architecture

� When your computer turns on, it starts a bootup
sequence in the BIOS

� The BIOS locates a suitable boot source (e.g. floppy,
harddrive, CD-ROM, network)

� Disks are devided into 512-byte blocks
� The very first block is the MBR (Master Boot Record)
� The BIOS loads and runs the code in the MBR, which

continues the bootup sequence

Partitioning

� The MBR contains a table allowing the disk to be
divided into (up to) four partitions

� Beyond that, you can nominate one partition as an
"extended partition" and then further subdivide it into
"logical partitions"

� FreeBSD has its own partitioning system, because Unix
predates the PC

� FreeBSD recognises MBR partitions, but calls them
"slices" to avoid ambiguity

FreeBSD partitions

� Partitions (usually) sit within a slice
� Partitions called a,b,c,d,e,f,g,h
� CANNOT use 'c'

� for historical reasons, partition 'c' refers to the entire slice
� By convention, 'a' is root partition and 'b' is swap

partition
� 'swap' is optional, but used to extend capacity of your

system RAM

Simple partitioning: /dev/ad0
MBR Single slice /dev/ad0s1

ad0s1a ad0s1b ad0s1d ad0s1e ad0s1f

/ swap /var /tmp /usr

/ (r oot par t i t i on) ad0s1a 256MB
 swap par t i t i on ad0s1b ~ 2 x RAM
/ var ad0s1d 256MB (+)
/ t mp ad0s1e 256MB
/ usr ad0s1f r est of di sk

'Auto' partition does this:

� Small root partition
� this will contain everything not in another partition
� /boot for kernel, /bin, /sbin etc.

� A swap partition for virtual memory
� Small /tmp partition

� so users creating temporary files can't fill up your root
partition

� Small /var partition
� Rest of disk is /usr

� Home directories are /usr/home/<username>

Issues

� /var may not be big enough
� /usr contains the OS, 3rd party software, and your own

important data
� If you reinstall from scratch and erase /usr, you will lose your

own data
� So you might want to split into /usr and /u

� Suggest 4-6GB for /usr, remainder for /u
� Some people prefer a ramdisk for /tmpd

/etc/fstab: 64MB ramdisk

md /tmp mfs -s131072,rw,nosuid,nodev,noatime 0 0

Core directory refresher

� / (/boot, /bin, /sbin, /etc, maybe /tmp)
� /var (Log files, spool, maybe user mail)
� /usr (Installed software and home dirs)
� Swap (Virtual memory)
� /tmp (May reside under “/”)

Don't confuse the the “root account” (/root) with the “root”
partition.

d

Note...

� Slicing/partition is just a logical division
� If your hard drive dies, most likely everything will be lost
� If you want data security, then you need to set up

mirroring with a separate drive
� Another reason to keep your data on a separate partition,

e.g. /u
� Remember, “rm -rf” on a mirror works very well.

Summary: block devices

� IDE (ATAPI) disk drives
� /dev/ad0
� /dev/ad1 ...etc

� SCSI or SCSI-like disks (e.g. USB flash)
� /dev/da0
� /dev/da1 ...etc

� IDE (ATAPI) CD-ROM
� /dev/acd0 ...etc

� Traditional floppy drive
� /dev/fd0

� etc.

Summary

� Slices
� /dev/ad0s1
� /dev/ad0s2
� /dev/ad0s3
� /dev/ad0s4

� Defined in MBR
� What PC heads call

"partitions"

� BSD Partitions
� /dev/ad0s1a
� /dev/ad0s1b
� /dev/ad0s1d ...etc
� /dev/ad0s2a
� /dev/ad0s2b
� /dev/ad0s2d ...etc

� Conventions:
� 'a' is /
� 'b' is swap
� 'c' cannot be used

Any questions?

?

Installing FreeBSD

� Surprisingly straightforward
� Boot from CD or floppies, runs "sysinstall"
� Slice your disk

� Can delete existing slice(s)
� Create a FreeBSD slice

� Partition
� Choose which parts of FreeBSD distribution you want,

or "all"
� Install from choice of media

� CD-ROM, FTP, even a huge pile of floppies!

Finding more information

� Our reference handout
� a roadmap!

� man pages
� esp. when you know the name of the command

� www.freebsd.org
� handbook, searchable website / mail archives

� "The Complete FreeBSD" (O'Reilly)
� comp.unix.shell FAQ

� http://www.faqs.org/faqs/
by-newsgroup/comp/comp.unix.shell.html

� STFW (Search The Friendly Web)

