Introduction to Campus Network Design & Operations

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

Research & Education Network Ecosystem

- Research & Education Network = REN
 - NREN = National REN
- Characteristics:
 - High bandwidths: 10Gbps is typical, 40G and 100G rolling out
 - Research needs uncongested networks
 - RENs are lightly used, with lots of capacity (headroom)
 - Low latency (terrestrial fibre)
 - Open Networks with NO filtering
- Hierarchical model

Global Connections

Regional Networks

National Networks

Campus Networks Network Startup Resource Center

Research & Education Network Ecosystem

- NREN Service Models
 - Peering network
 - Connects campuses together
 - Provides connectivity to international R&E
 - Peers at local IXPs
 - Implications: Campuses also need connectivity from ISP
 - REN provides all Internet connectivity
 - REN is the ISP for the campuses
 - Implications: Simplest for campuses only one connection to manage

Research & Education Network Ecosystem

- Campus is the foundation of successful R&E network
- But, many:
 - Do not have any structure
 - Make heavy use of NAT and Firewalls limiting performance
 - Are built using unmanaged equipment
 - Are forced do dual home, without skills to manage this
 - Are built using outdated fibre and copper that cannot support high speeds

Campus Design Principles

- Simple design rules:
 - Minimise number of network devices in the path
 - Use hub & spoke (star topology), not daisy chains
 - Segment the network with routers in the core
 - Services at the core, not the edge
 - Always buy managed devices
 - Think very carefully about positioning of firewalls and NAT
 - Firewalls are for protecting servers and the services they host
 - Treat public campus network as untrustworthy as the Internet

Campus Cabling Best Practices

Two types of cabling:

- Unshielded twisted pair (UTP): for use inside racks and inside buildings
- Fibre optic cabling: provides service between buildings and between network racks

UTP

- Cat5e supports up to 1Gbps ethernet to 100metres
- Cat6 similar to Cat5e but costs more
- Cat6a 4x cost of Cat5e, for supporting 10Gbps over copper not required for desktop yet

Fibre Optics:

- Multi-mode: outdated; expensive; short range; only found in equipment racks now
- Single-mode: inexpensive; distances up to 80km; speeds over 100Gbps

Switching Architectures: Spanning Tree

- Switching Loops:
 - Unprotected means network traffic swamps network leading to outage
 - Good loops provide backup in case of link or device failure
- Spanning Tree Protocol
 - Runs on all switching devices
 - Calculates optimum path through a network between all L2 devices
 - STP, RSTP, MST flavours RSTP recommended on all L2 devices
 - Careful selection of Bridge Priorities required
 - Root of the tree needs to be the core switch etc

Switching Architectures: VLANs

- Maximum number of devices on any one L2 broadcast domain should be kept under 100
- Beyond that, introduce virtual LANs
 - Allows one switch to support several different broadcast domains (LANs)
 - Allows the campus network to scale
- Best Practice Design:
 - One or several VLANs per building
 - Do NOT span VLANs across buildings
 - Never use VLAN 1
 - Route between VLANs in the core

Switching Architectures: Advanced L2

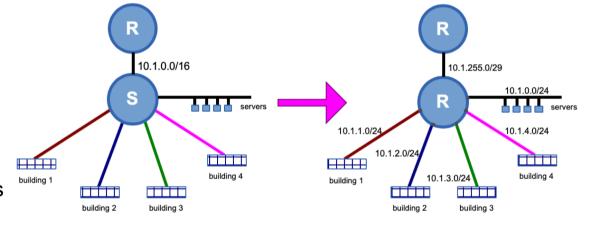
- Link Aggregation
 - Bundling more than one link between switches
 - Increasing bandwidth between two devices
 - Standard: LACP (Link Aggregation Control Protocol)
- LLDP or CDP
 - Link Layer Discovery Protocol / Cisco Discovery Protocol
 - Allows admin to discover other devices on the campus backbone
- BPDU Guard
 - Blocks Bridge PDUs on interfaces where not expected

Routing & Forwarding

- Routers
 - L3 devices, routing packets between broadcast domains
- Routing
 - Building tables of destinations based on information shared between routers by routing protocols
- Forwarding
 - Moving packets between interfaces based in information from the routing table
- Routing Protocols:
 - Static
 - Dynamic: OSPF, IS-IS, BGP

L3 Switches

- Contradiction:
 - -L2 = switch
 - -L3 = router
 - L3 Switch??
- An ethernet switch with some routing capability
- Core of the Campus needs to be a L3 Switch
 - Switch with many interfaces, but able to route at wire-speed between all the VLANs terminating on it
 - And host connection to campus services and link to campus border router



Migrating from Flat to Routed

- Many campuses are one huge flat network
 - Doesn't work, doesn't scale
- Migrate to VLANs + core router
 - Star network, not daisy-chain
- Best practices:
 - Design a migration plan! With rollbacks
 - Design an address plan (IPv4 & IPv6)
 - Deploy new VLAN scheme in one building first
 - Core → Distribution → Edge
 - Test connectivity at each stage
 - Migrate users, turn off VLAN 1, and move to next Building

Selecting Campus Devices

Edge Switch

- L2 only! (No L3 needed)
- VLANs, RSTP, Encrypted Management, DHCP Snooping, RA Guard
- Managed! (CLI, serial console, at least SNMPv2)
- 24 or 48 10/100/1000 ports, fibre uplinks (1Gbps, 10Gbps better)

Distribution Switch

- Same basic specification as Edge switch
- 12 or 24 copper or fibre ports, 10Gbps fibre uplink

Selecting Campus Devices

Core Router

- L3 Switch Lots of fibre ports (1G/10G)
- Robust line rate forwarding at L3
- Sufficient ARP (IPv4) and NDP (IPv6) entries
- DHCP relay/helper, full management (SSH, SNMPv2/3)
- OSPF (v2 & v3), HSRP, Mirror/Span port
- 2x Small form factor (1RU 48 port) rather than one "redundant" chassis

Border Router

- Robust line rate forwarding at L3
- IPv4/6, OSPF (v2 & v3), BGP, NAT, full management (SSH, SNMPv2/3)
- Small form factor (few ports needed) rather than one "redundant" chassis

Wireless on Campus

- Two wireless frequency ranges:
 - -2.4GHz 802.11b/g/n
 - Provides only 4 non-overlapping channels (1, 6, 11, 14)
 - 5 GHz 802.11a/n/ac
 - Provides 25 non-overlapping channels

Design:

- Not all Access Points are created equal cheap AP → small CPU → few users
- Avoid channel overlaps, pay attention to physical obstacles
- Estimate number and type of users per AP
- 802.11ac means 1Gbps access to the AP
- Bring Your Own Device is standard today: 2-4 devices per person!

Wireless on Campus

SSID:

- "Wireless name", the network users join
- SSID planning: names matter, trade-off for roaming
- Avoid tempting names
- Users prefer seamless roaming
 - Where? Within a building? Across the whole campus?

Authentication:

- MAC address: easily defeated
- Pre-Share Key: who knows the password? Fine for temporary setups only.
- Captive Portal: better than PSK
- 802.1x: WPA2-AES is the global standard, allows for EduRoam too

Dynamic Routing: OSPF

OSPF:

- Dynamic Routing protocol using SPF algorithm (same as used for Spanning Tree)
- IETF standard, must be implemented on all L3 devices (routers)
- Essential next step beyond static routes
 - Small campus would have static default on core to border, and static routes from border to core for VLANs
 - Larger campuses deploy OSPF for scalability and to allow redundancy in the core

NAT

- Was developed to allow entities with non-routable address space to connect to global Internet
 - Now used to prolong IPv4
- Network Address and Port Translation, translates multiple IP addresses into one other IP address
 - TCP/UDP port distinguishes flows
- NAT Best Practices:
 - Deploy IPv6 offloads majority of content traffic from NAT
 - As close to campus border → on border router!
 - Minimise translation time outs to allow efficient use of public address pool
 - Use different public address pools for different campus user categories

Campus Operations Best Practices

• DNS:

- Local on-campus resolver, sub-millisecond RTT for cached DNS lookups
- User experience: webpages load quickly
- unbound software is simple to install and operate

DHCP:

- Without an address, nothing can get a connection
- Make sure address pools are large enough, and lease times appropriate (short for wireless, longer for fixed ethernet)

NTP:

 Without time synchronisation across network devices, authentication protocols and DNS may fail, and security incidents hard to trace across devices

Campus Operations Best Practices

- Many other recommendations!
- Examples:
 - Implement anti-spoofing filters on all access ports (core router interfaces facing users)
 - NAT must only translate addresses used internally for campus
 - Block TCP/25 (SMTP) out bound apart from authorised email relays
 - Rate limit UDP rather than blocking it
 - · Bittorrent will just move to TCP if UDP is blocked
 - Deploy IPv6
 - Reduces load on campus NAT device
 - Avoids situation where Bittorrent and other clients tunnel using IPv6

- Security is Hard it is NOT a one box solution
- Campus networks need to be open
- There will always be people being bad
- Security is a Process:
 - Assessment of what's at risk
 - Protection: efforts to mitigate that risk
 - Detection of intrusions
 - Response
 - Repeat!

- Policy Framework: Acceptable Use Policy
 - Without an AUP there is nothing a Campus Admin can do to enforce a security policy
- Network Management
 - MUST have managed equipment in the network
 - MUST run network monitoring tools (LibreNMS, NfSen, smokeping etc)
- Encryption
 - Disable clear text password protocols deploy letsencrypt for mail servers and websites no self-signed certs!
- Virus Protection
 - Viruses arrive by email or clickable links (all encrypted)
 - Firewall is useless for this, yet we still deploy firewalls to stop them!
- Authentication
 - Who is using our network? Each user must have account (LDAP or AD)

- Wireless:
 - Who may install APs?
 - 802.1x authentication against central database
- Blocking Traffic:
 - Default needs to be to allow traffic, not block it
 - Block vulnerabilities border router with simple filters can do this
 - Monitoring system needs to be in place tracking unusual trends
 - Blocking outbound ports seriously inconveniences visitors
 - Remember, Universities are designed to attract clever people, they will work around port blocking

Bandwidth Shaping

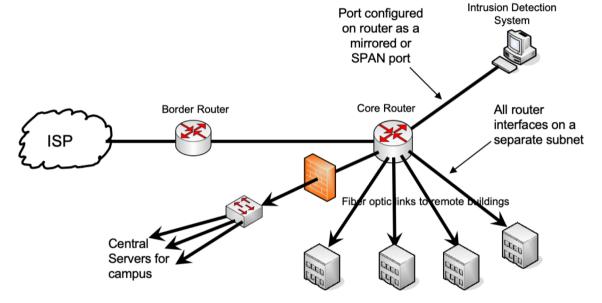
 Per user? Per department? Some users have legitimate needs to move large datasets around → AUP to the rescue.

Deep Packet Inspection

- Won't work for encrypted traffic. What's the difference between encrypted humorous cat video and encrypted veterinary medicine video?
- In-line controls are very expensive and are a serious bottle-neck

Performance

– Today's 100Mbps campus backbone will become tomorrow's 1Gbps campus backbone, and then on to 10Gbps. Which Firewall/DPI box??


Conclusion:

- Firewalls are useless
- Bandwidth shaping is useless
- DPI is useless

Solution:

- Scalable campus design
- Security policy including an AUP at its core
- Monitoring! Monitoring!
- Firewalls belong in front of servers in campus core

Network Monitoring & Management

- What & Why We Monitor
- Baseline Performance & Attack Detection
- Network Attack Detection
- What & Why We Manage
- Network Monitoring & Management Tools large number of open source tools
- The NOC: Consolidating Systems not necessarily a place, but an organizational concept

Network Monitoring & Management

Examples of monitoring & management systems for a Campus

Tool	Function
RT	Request Tracker – ticketing system for tracking requests
RANCID	Device configuration tracking & management
LibreNMS	Monitoring device health, traffic and interface loads
NfSen	NetFlow/IPFIX traffic flows crossing border router/NAT
Smokeping	Monitoring connection health, RTT, response time, jitter within campus and to the REN/ISP
Nagios	Device availability

Questions?

This document is a result of work by the Network Startup Resource Center (NSRC at https://www.nsrc.org). This document may be freely copied, modified, and otherwise re-used on the condition that any re-use acknowledge the NSRC as the original source.

