Deploying an Island-Wide Wireless Network

A case study on providing broadband internet service in American Samoa

> Aloiamoa Anesi, Jr Blue Sky Communications <u>alo.anesi@bluesky.as</u>

Blue Sky

- ~400 Wireless subscribers
- Coverage available in 90% of the populated areas

Overview

- Last mile connectivity options for Broadband Service Providers
- Reasons for choosing a fixed wireless solution
- Deployment

Wireless Advantages

Requires relatively less infrastructure

- Lack of outside plant maintenance
- Comparatively quick rollout
- Modular equipment
- Simple installation
- Layer-2 everywhere

Wireless Disadvantages

- Use of the unlicensed band presents issues
- Radio frequency interference is always a concern
- Line-of-sight is almost always required
- Layer-2 everywhere

Wireless Wins

- We have cell site towers for PCS that can be utilized for Wireless Access Points
- We don't have to build out physical connections for the last-mile
- Customer installations are easy to rollout
- The equipment is relatively inexpensive
 - \$800USD per Subscriber Module;

Motorola Canopy

- Operates on the 5.7Ghz and 900Mhz band
- SNMP v2c capable
- Access points have 7Mbps of total bandwidth
 - Usually configured for 3.5Mbps up/down
- Backhauls are either IOMbps or 20Mbps
- VLAN support

Frequency

The ISM Unlicensed Band (Industrial, Scientific and Medical)

Modules

• Backhaul Unit

Point-to-point conne

Access Point

Point-to-multipoint connection

- Subscriber Module
 - Receiver

Access Point (AP) Subscriber Module (SM)

(SM)

(вн)

(BH)

Deployment

- Terrain concerns
- Deployment strategies
- Using wireless backhauls
- Customer premises installation
- Solving line-of-sight issues
- Upgrading service

American Samoa Terrain

Population Density

Access Point Deployment

American Samoa Terrain

Aunu'u Backhaul ~12.5mi

Installation

Device Information	
Device type	5.7GHz - Multipoint - Subscriber Modem - 0a-00-3e-f1-fd-5d
Software Version	CANOPY 7.3.6 Oct 24 2005 12:06:56 SM-DES
Software Boot Version	CANOPYBOOT 3.0
FPGA Version	070605 (DES Sched)
Uptime	4d, 06:44:32
System Time	07:14:57 06/13/2007
Ethernet Interface	100Base-TX Full Duplex
Subscriber Modem Stats	
Session Status	REGISTERED
Registered AP	0a-00-3e-f6-de-f6
RSSI	828 (-67 dBm)
Jitter	7
Air Delay	349 (approximately 3.24 miles (17101 feet))
Air Delay	349 (approximately 3.24 miles (17101 feet))
2 June	

Alerting

Layer-2VLANs

- VLANs are used extensively to segregate broadcast domains
- Each site is allocated a /26 subnet on a distinct VLAN
- Each Access Point has a trunk port to carry multiple VLANs
- Canopy equipment is addressed from a protected VLAN

Service Upgrades

- Canopy Advantage
- 900Mhz Access Points
- Private VLAN Point-to-point connections

Canopy Advantage

- 2x Multiplier allows for up to 14Mbps shared bandwidth
- Hardware scheduling reduces latency
 - Usual wireless latency on a long hop (>3Mi) is reduced from ~80ms to ~8ms
 - Slight drop in signal strength
 - Must be I0Mhz above the noise floor

900Mhz Access Points

- 5.7Ghz modules are heavily reliant on lineof-sight
- 900Mhz modules operate on near line-ofsight
- Better foliage penetration
- Operates in conjuction with 5.7Ghz
- 900Mhz band is the same one used by

Private VLAN Point-to-point

- Private VLAN segregation
- Allows customers to connect satellite offices
- Ideal replacement for TI/Frame Relay links
- For bandwidth intensive applications, Backhaul units are used in place of SMs

Private VLAN Setup

Notes about bandwidth

- There is a hard limit to upstream bandwidth on a subscriber module
- 5.7Ghz SM only reaches about IMbps upstream in real-world conditions
- Asynchronous links are normally utilized
- Wireless bandwidth far exceeds satellite bandwidth

Frequency Map

- Work out the frequency map with any other service providers using the same frequency range
- I0-I5Mhz separation is ideal
- Update each other regularly

Final Impressions

- Performs well
- Relatively stable
- Highly configurable
- Cross-training in RF technologies needed
- Cooperation is necessary

Module Placement

- The higher the better
- Take terrain into consideration
- Keep expansion in mind

Best Current Practices

• What's important is what works

Tools

- Google Earth
- Google Sketchup
- Microsoft Visio or Omnigraffle
- Nagios
- Cacti

Image © 2007 DigitalG Image © 2007 TerraMe °~~Google

"Google

Image © 2007 DigitalGlobe Image © 2007 TerraMetrics ®2007Google™